Age-Dependent Modes of Extensional Necking Instability in Soft Glassy Materials
نویسندگان
چکیده
منابع مشابه
Age-dependent modes of extensional necking instability in soft glassy materials.
We study the instability to necking of an initially cylindrical filament of soft glassy material subject to extensional stretching. By numerical simulation of the soft glassy rheology model and a simplified fluidity model, and by analytical predictions within a highly generic toy description, we show that the mode of instability is set by the age of the sample relative to the inverse of the app...
متن کاملCriterion for extensional necking instability in polymeric fluids.
We study the linear instability with respect to necking of a filament of polymeric fluid undergoing uniaxial extension. Contrary to the widely discussed Considère criterion, we find the onset of instability to relate closely to the onset of downward curvature in the time (and so strain) evolution of the zz component of the molecular strain, for extension along the z axis. In establishing this r...
متن کاملRheology of Soft Glassy Materials
We attribute similarities in the rheology of many soft materials (foams, emulsions, slurries, etc.) to the shared features of structural disorder and metastability. A generic model for the mesoscopic dynamics of “soft glassy matter” is introduced, with interactions represented by a mean-field noise temperature x. We find power-law fluid behavior either with sx , 1d or without s1 , x , 2d a yiel...
متن کاملRheological hysteresis in soft glassy materials.
The nonlinear rheology of a soft glassy material is captured by its constitutive relation, shear stress versus shear rate, which is most generally obtained by sweeping up or down the shear rate over a finite temporal window. For a huge amount of complex fluids, the up and down sweeps do not superimpose and define a rheological hysteresis loop. By means of extensive rheometry coupled to time-res...
متن کاملShear banding in soft glassy materials.
Many soft materials, including microgels, dense colloidal emulsions, star polymers, dense packings of multilamellar vesicles, and textured morphologies of liquid crystals, share the basic 'glassy' features of structural disorder and metastability. These in turn give rise to several notable features in the low frequency shear rheology (deformation and flow properties) of these materials: in part...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2015
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.114.158301